
Collection Types
Sequences, Arrays, Sets, and Bags

Jeffrey Maddalon1

j.m.maddalon@nasa.gov

NASA

PVS Class, 2012

1heavily based on a previous talk by Rick Butler
Jeffrey Maddalon (NASA) Collection Types PVS Class, 2012 1 / 50

Outline

1 Membership Collections
Sets
Proving with Sets
Sets in Type Theory
Choose
Finite Sets
Bags

2 Object Collections
Sequence
Bounded Array
Array Operations
Finite Sequences

Jeffrey Maddalon (NASA) Collection Types PVS Class, 2012 2 / 50

Membership Collections

These “membership” collections are available in PVS

Sets [T -> bool]

Finite Sets [(is finite) -> bool]

Bags (aka multisets) [T -> nat]

Finite Bags [(is finite) -> nat]

Jeffrey Maddalon (NASA) Collection Types PVS Class, 2012 3 / 50

Sets in PVS

A set is just a predicate (i.e., a function into bool):
letters: TYPE = {a,b,c,d,e,f}
S: set[letters] = ...

For example, if S represents:
S(a) --> TRUE S(b) --> TRUE

S(c) --> FALSE S(d) --> TRUE

S(e) --> TRUE S(f) --> FALSE

Then, it can be specified in PVS as:
S: set[letters] = (LAMBDA (x: letters):

(x=a) OR (x=b) OR (x=d) OR (x=e))

Alternatively, one could write:
S: set[letters] = { x: letters | (x=a) OR (x=b) OR

(x=d) OR (x=e) }

But, there is no PVS set constructor:
S:set[letters] = { a, b, d, e }
I However, this form can be used for type construction (see above)

Jeffrey Maddalon (NASA) Collection Types PVS Class, 2012 4 / 50

The Sets Theory in Prelude

The sets[T: TYPE] theory is defined in the prelude:

sets [T: TYPE]: THEORY

BEGIN

set: TYPE = [T -> bool]

x, y: VAR T

a, b, c: VAR set

p: VAR PRED[T]

member(x, a): bool = a(x)

empty?(a): bool = (FORALL x: NOT member(x, a))

emptyset: set = {x | false}
nonempty?(a): bool = NOT empty?(a)

fullset: set = {x | true}

subset?(a, b): bool = (FORALL x: member(x, a) => member(x, b))

strict_subset?(a, b): bool = subset?(a, b) & a /= b

...

Jeffrey Maddalon (NASA) Collection Types PVS Class, 2012 5 / 50

The Sets Theory in Prelude (cont’d)

PVS Name meaning

union(a,b) everything in a or b
intersection(a,b) anything in both a and b
disjoint?(a,b) do a and b share any elements
difference(a,b) all members of a that are not in b
singleton(x) constructs set with element x
add(x,a) add element x to a
remove(x,a) remove element x from a
choose(a) choose an arbitrary element of a
rest(a) the set a without choose(a)

Jeffrey Maddalon (NASA) Collection Types PVS Class, 2012 6 / 50

Some important lemmas about sets

Useful lemmas about sets in the sets lemmas theory in the prelude

emptyset_is_empty?: LEMMA empty?(a) IFF a = emptyset

subset_transitive : LEMMA subset?(a, b) AND subset?(b, c)

IMPLIES subset?(a, c)

subset_emptyset : LEMMA subset?(emptyset, a)

union_empty : LEMMA union(a, emptyset) = a

union_subset1 : LEMMA subset?(a, union(a, b))

intersection_empty: LEMMA intersection(a, emptyset) = emptyset

distribute_intersection_union: LEMMA intersection(a, union(b, c))

= union(intersection(a, b), intersection(a, c))

distribute_union_intersection: LEMMA union(a, intersection(b, c))

= intersection(union(a, b), union(a, c))

member_add : LEMMA member(x, a) IMPLIES add(x, a) = a

choose_member : LEMMA NOT empty?(a) IMPLIES member(choose(a), a)

choose_singleton: LEMMA choose(singleton(x)) = x

Jeffrey Maddalon (NASA) Collection Types PVS Class, 2012 7 / 50

Using Set Lemmas

Using the lemma:
union commutative: LEMMA union(a, b) = union(b, a)

Usually, one must include the parent type:
(lemma "union commutative[nat])"

Sometimes you can get away with
(rewrite "union commutative)"

but not always!

Jeffrey Maddalon (NASA) Collection Types PVS Class, 2012 8 / 50

Set Union and Intersection

x ∈ B ∪ C ≡ union(B, C)(x) = B(x) OR C(x)

x ∈ B ∩ C ≡ intersection(B, C)(x) = B(x) AND C(x)

Thus operations on sets can be reduced to propositional formulas by set
membership, i.e.,

union(B, C) is a function

union(B, C)(x) is a propositional formula

Jeffrey Maddalon (NASA) Collection Types PVS Class, 2012 9 / 50

Proving with subset?

|-------

{1} subset?(B, C)

Rule? (expand "subset?")

|-------

{1} (FORALL (x: int): member(x, B) => member(x, C))

Rule? (skosimp*)

|-------

{1} member(x!1, B) => member(x!1, C)

Rule? (expand "member")

|-------

{1} (B(x!1) => C(x!1))

This can get a little tedious, is there another way?

Jeffrey Maddalon (NASA) Collection Types PVS Class, 2012 10 / 50

Interlude: Auto Rewriting

|-------

{1} factorial(5) > 100

Rule? (rewrite "factorial")

nn gets 5, Rewriting using factorial, matching in *,

|-------

{1} 5 * factorial(4) > 100

Rule? (auto-rewrite "factorial")

|-------

[1] 5 * factorial(4) > 100

Rule? (assert)

factorial rewrites factorial(1) to 1

factorial rewrites factorial(2) to 2

factorial rewrites factorial(3) to 6

factorial rewrites factorial(4) to 24

Simplifying, rewriting, and recording with decision procedures,

Q.E.D.

Jeffrey Maddalon (NASA) Collection Types PVS Class, 2012 11 / 50

Set Auto-rewriting

An automatic reduction of set operations can be facilitated through use of
(install-rewrites :defs t)

which installs all the definitions used directly or indirectly in the original
statement as auto-rewrite rules

Another form is
(auto-rewrite-theory "sets[T]")

which installs an entire theory as auto-rewrites.

Be careful with this one. If the theory contains a commutativity
result, this will cause an endless loop.

Jeffrey Maddalon (NASA) Collection Types PVS Class, 2012 12 / 50

install-rewrites

{-1} subset?(A!1, C!1)

|-------

{1} subset?(union(A!1, B!1), union(C!1, B!1))

Rule? (install-rewrites :defs t)

Rewriting relative to the theory: sets[real],

this simplifies to:

set_rewrite2 :

[-1] subset?(A!1, C!1)

|-------

[1] subset?(union(A!1, B!1), union(C!1, B!1))

Jeffrey Maddalon (NASA) Collection Types PVS Class, 2012 13 / 50

install-rewrites (cont’d)
Rule? (assert)

member rewrites member(x, A!1) to A!1(x)

member rewrites member(x, C!1) to C!1(x)

subset? rewrites subset?(A!1, C!1) to FORALL (x: real): A!1(x) => C!1(x)

member rewrites member(x, A!1) to A!1(x)

member rewrites member(x, B!1) to B!1(x)

union rewrites union(A!1, B!1)(x) to A!1(x) OR B!1(x)

member rewrites member(x, union(A!1, B!1)) to A!1(x) OR B!1(x)

member rewrites member(x, C!1) to C!1(x)

union rewrites union(C!1, B!1)(x) to C!1(x) OR B!1(x)

member rewrites member(x, union(C!1, B!1)) to C!1(x) OR B!1(x)

subset? rewrites subset?(union(A!1, B!1), union(C!1, B!1))

to FORALL (x: real): A!1(x) OR B!1(x) => C!1(x) OR B!1(x)

Simplifying, rewriting, and recording with decision procedures,

this simplifies to:

set_rewrite2 :

{-1} FORALL (x: real): A!1(x) => C!1(x)

|-------

{1} FORALL (x: real): A!1(x) OR B!1(x) => C!1(x) OR B!1(x)

an easily proved formula.
How?

Jeffrey Maddalon (NASA) Collection Types PVS Class, 2012 14 / 50

Set Equality

To prove that two sets are equal we must use function extensionality:

f = g IFF ∀x : f (x) = g(x)

because sets are just functions into bools (i.e., predicates)

(decompose-equality) will do the trick

(apply-extensionality) is a less powerful version

Jeffrey Maddalon (NASA) Collection Types PVS Class, 2012 15 / 50

Set Equality: Example

A: set[real] = { x: real | (x=1) OR (x=2) OR (x=3) }

equality: LEMMA A = add(1,add(2,singleton(3)))

ill_ext :

|-------

{1} A = add(1, add(2, singleton(3)))

Rule? (decompose-equality)

|-------

{1} A(x!1) = add(1, add(2, singleton(3)))(x!1)

Rule? (install-rewrites :defs t)

|-------

[1] A(x!1) = add(1, add(2, singleton(3)))(x!1)

Jeffrey Maddalon (NASA) Collection Types PVS Class, 2012 16 / 50

Set Equality: Example (cont’d)
Rule? (assert)

A rewrites AA(x!1)

to (x!1 = 1) OR (x!1 = 2) OR (x!1 = 3)

singleton rewrites singleton(3)(x!1)

to x!1 = 3

member rewrites member(x!1, singleton(3))

to x!1 = 3

add rewrites add(2, singleton(3))(x!1)

to 2 = x!1 OR x!1 = 3

member rewrites member(x!1, add(2, singleton(3)))

to 2 = x!1 OR x!1 = 3

add rewrites add(1, add(2, singleton(3)))(x!1)

to 1 = x!1 OR 2 = x!1 OR x!1 = 3

Simplifying, rewriting, and recording with decision procedures,

|-------

{1} (((x!1 = 1) OR (x!1 = 2) OR (x!1 = 3)) =

(1 = x!1 OR 2 = x!1 OR x!1 = 3))

Rule? (ground)

No change on: (ground)

What happened here? Any suggestions?

Jeffrey Maddalon (NASA) Collection Types PVS Class, 2012 17 / 50

Set Equality: Example (cont’d)

We need to convert the equality of two formulas into a propositional
formula.

Rule? (iff)

Converting top level boolean equality into IFF form,

Converting equality to IFF,

this simplifies to:

ill_ext :

|-------

{1} (x!1 = 1) OR (x!1 = 2) OR (x!1 = 3) IFF

1 = x!1 OR 2 = x!1 OR x!1 = 3

Rule? (ground)

Applying propositional simplification and decision procedures,

Q.E.D.

Jeffrey Maddalon (NASA) Collection Types PVS Class, 2012 18 / 50

Big Warning

Given
T 100: TYPE = { n: nat | 0 <= n AND n <= 100 }
T 125: TYPE = { n: nat | 25 <= n AND n <= 125 }

Then
{ t: T 100 | t = 50 } 6= { t: T 125 | t = 50 }

Why?

Jeffrey Maddalon (NASA) Collection Types PVS Class, 2012 19 / 50

Big Warning (cont’d)

Given
T 100: TYPE = { n: nat | 0 <= n AND n <= 100 }
T 125: TYPE = { n: nat | 25 <= n AND n <= 125 }

When we ask are these two sets equal
{ t:T 100 | t = 50 } { t: T 125 | t = 50 }

We are really asking are these two functions equal?
(LAMBDA (t:T 100): t = 50) (LAMBDA (t: T 125): t = 50)

THE DOMAINS ARE NOT EQUAL!

The decompose-equality strategy requires the domains to be the same

Even though in set theory semantics they represent the same set

Jeffrey Maddalon (NASA) Collection Types PVS Class, 2012 20 / 50

Thoughts About Sets in Type Theory

Type theory offers several advantages over set theory

Avoids the classic paradoxes in an intuitive way.

Type checking uncovers errors

More “natural” for people used to (most) programming languages

However, there are some disadvantages:

Sets with the same elements but different domains are different.
I The emptyset is not unique

(i.e., emptyset[T1] and emptyset[T2] are not identical)

There are different set operations for each basic element type. In
other words, card[T1] is not the same function as card[T2].

Jeffrey Maddalon (NASA) Collection Types PVS Class, 2012 21 / 50

Back to “Big Warning”

If you give PVS
T 100: TYPE = { n: nat | 0 <= n AND n <= 100 }
ll: LEMMA {t:T 100 | t = 50} = {t: nat | n = 50}

it will recognize the domain mismatch and interpret this as
|-------

{1} {t: T_100 | t = 50} = restrict({n: nat | n = 50})

where restrict is defined in the prelude as:
restrict [T: TYPE, S: TYPE FROM T, R: TYPE]: THEORY

BEGIN

f: VAR [T -> R]

s: VAR S

restrict(f)(s): R = f(s)

CONVERSION restrict

END restrict

This CONVERSION helps here, but there are plenty of cases it doesn’t.

Jeffrey Maddalon (NASA) Collection Types PVS Class, 2012 22 / 50

The Moral Of the Story

MORAL: Define sets over the PARENT TYPE unless there is a very good
reason not to.

USE
{ n: nat | P(n) AND n <= 100 }

RATHER THAN
T 100: TYPE = { n: nat | n <= 100 }
{ t:T 100 | P(t) }

This will keep all the domains the same.

Jeffrey Maddalon (NASA) Collection Types PVS Class, 2012 23 / 50

Choose Function

The choose function returns an arbitrary element of a nonempty set:
choose(p: (nonempty?)): (p) = epsilon(p)

An empty set will cause an unprovable TCC.

If the set is potentially empty, one should use epsilon directly.

epsilon produces an element in the set if one exists, and otherwise
produces an arbitrary element of the type.

I The parent type of the set must be nonempty.

The function epsilon is defined as follows:
epsilons [T: NONEMPTY_TYPE]: THEORY

BEGIN

p: VAR pred[T]

x: VAR T

epsilon(p): T

epsilon_ax: AXIOM (EXISTS x: p(x)) => p(epsilon(p))

Jeffrey Maddalon (NASA) Collection Types PVS Class, 2012 24 / 50

Choose Function: Additional Thoughts

choose returns an arbitrary element, not a random element, thus if
x = choose(a) and y = choose(a), then x always equals y

It would have been nice if choose had been defined without a body:
choose(p: (nonempty?)): (p)

since all of the properties needed are implicit in the return type.
I If the body were not present, choose would not expand when using

(grind) or (auto-rewrite-theory "sets[nat]")

I Recommendation:
(auto-rewrite-theory "sets[nat]" :exclude "choose")

(grind :exclude "choose")

(install-rewrites :DEFS T :EXCLUDE "choose")

Jeffrey Maddalon (NASA) Collection Types PVS Class, 2012 25 / 50

Motivation For Finite Sets

We would like to have to following functions defined over sets:

1 Cardinality function

2 Minimum and maximum over a set

3 Summation over a set

and the ability to perform set induction.

Jeffrey Maddalon (NASA) Collection Types PVS Class, 2012 26 / 50

Basic Definitions

Let’s define a predicate that indicates when a set is finite:
is finite(S): bool = (EXISTS N, (f: [(S)->below[N]]): injective?(f))

So a set is finite if there is a one-to-one function between the
members of the set and a finite set of natural numbers.

The user is free to pick any N that is convenient and not necessarily
the smallest.

injective? is defined in the PVS prelude as:

functions [D, R: TYPE]: THEORY

f, g: VAR [D -> R]

x, x1, x2: VAR D

y: VAR R

injective?(f): bool = (FORALL x1, x2: (f(x1) = f(x2) => (x1 = x2)))

surjective?(f): bool = (FORALL y: (EXISTS x: f(x) = y))

bijective?(f): bool = injective?(f) & surjective?(f)

Jeffrey Maddalon (NASA) Collection Types PVS Class, 2012 27 / 50

The type finite set

finite set: TYPE = (is finite) CONTAINING emptyset[T]

A nonempty finite set is defined as follows:
non empty finite set: TYPE = {s: finite set | NOT empty?(s)}

The declaration of a finite set variable:
IMPORTING finite sets

S: VAR finite set[T]

REMINDER:
(is finite) is an abbreviation for the type

{t: setof[T] | is finite(t)}

Jeffrey Maddalon (NASA) Collection Types PVS Class, 2012 28 / 50

Finite Set Operations

The standard set operations are defined in the prelude theory, sets

Because finite set is a subtype of set, all of the operations on the set

type are inherited by the finite set type.

The set operations preserve finiteness:
A,B: VAR finite_sets

finite_union: LEMMA is_finite(union(A,B))

finite_intersection: LEMMA is_finite(intersection(A,B))

finite_difference: LEMMA is_finite(difference(A,B))

finite_add: LEMMA is_finite(add(x,A))

finite_remove: LEMMA is_finite(remove(x,A))

finite_subset: LEMMA subset?(S,A) IMPLIES is_finite(S)

finite_singleton: LEMMA is_finite(singleton(x))

finite_empty: LEMMA is_finite(emptyset[T])

finite_rest: LEMMA is_finite(rest(A))

Jeffrey Maddalon (NASA) Collection Types PVS Class, 2012 29 / 50

Judgements for Finite Sets - for Reference
finite_singleton: JUDGEMENT singleton(x) HAS_TYPE finite_set

finite_union : JUDGEMENT union(A, B) HAS_TYPE finite_set

finite_intersec1: JUDGEMENT intersection(s, A) HAS_TYPE finite_set

finite_intersec2: JUDGEMENT intersection(A, s) HAS_TYPE finite_set

nonempty_finite_is_nonempty: JUDGEMENT

non_empty_finite_set SUBTYPE_OF (nonempty?[T])

nonemp_fin_un1: JUDGEMENT union(NA, B) HAS_TYPE non_empty_finite_set

The inclusion of these judgements in the library will minimize the
number of TCCs that are generated.

Without the JUDGEMENT statements, every use of the basic set
operations on a finite set (e.g. add(x,S)) in a context that requires a
finite set, would result in the generation of a TCC.

What’s the different between these judgements and the lemmas on
the previous page?

Jeffrey Maddalon (NASA) Collection Types PVS Class, 2012 30 / 50

Structure Of The Finite Sets Library

The library contains the following theories

finite sets part of the prelude, not library (pro-
vides basic type and cardinality)

finite sets sum summation over a set
finite sets minmax min and max over a set

finite sets inductions induction schemes
finite sets sum real additional properties for summa-

tions over real-valued functions
finite sets int special results of integer sets
finite sets nat special results of natural num sets

The library also contains theories card def, finite sets def, and card lt which
are not meant to be directly imported.

Jeffrey Maddalon (NASA) Collection Types PVS Class, 2012 31 / 50

Cardinality of a Finite Set - for Reference

S: VAR finite_set[T]

inj_set(S): (nonempty?[nat]) =

{n | EXISTS (f: [(S)->below[n]]) : injective?(f) }

Card(S): nat = min(inj_set(S))

card(S): {n: nat| n = Card(S)} % inhibit expansion

Cardinality is defined to be the smallest n for which an injection exists.

To inhibit expansion, the card function is defined using a return type
that is a singleton.

The definition can be retrieved using a typepred command (e.g.
typepred "card(S!1)") or the card bij theorem:

card bij: THEOREM card(S) = N IFF

(EXISTS (f: [(S) -> below[N]]): bijective?(f))

Jeffrey Maddalon (NASA) Collection Types PVS Class, 2012 32 / 50

Lemmas of card Over the Set Operations

card union |A ∪ B| = |A|+ |B| − |A ∩ B|
card add add one if element is not in set

card remove remove one if element is in set
card subset A ⊆ B implies |A| ≤ |B|

card emptyset equals zero
card singleton equals one

Most users of the library will only need to use these lemmas and not the
more fundamental definition of card.

Jeffrey Maddalon (NASA) Collection Types PVS Class, 2012 33 / 50

Minimum and Maximum of a Set

The library2 provides functions that return the minimum and maximum
elements of a set

SS: VAR non_empty_finite_set[T]

min(SS): {a:T | SS(a) AND (FORALL (x:T): SS(x) IMPLIES a <= x)}
max(SS): {a:T | SS(a) AND (FORALL (x:T): SS(x) IMPLIES x <= a)}

These functions are not constructively defined, but are merely
constrained to return a value from a specified set.

The following useful properties of min and max over the set union operator
are also provided:

A,B: VAR non_empty_finite_set

min_union: LEMMA min(A) = x AND min(B) = y IMPLIES

min(union(A,B)) = min(x,y)

max_union: LEMMA max(A) = x AND max(B) = y IMPLIES

max(union(A,B)) = max(x,y)

2
nasalib/finite sets/finite sets minmax.pvs

Jeffrey Maddalon (NASA) Collection Types PVS Class, 2012 34 / 50

Summation Over a Set

The library3 provides summation

sum(S,f) : RECURSIVE R =

IF (empty?(S)) THEN zero

ELSE f(choose(S)) + sum(rest(S),f)

ENDIF MEASURE (LAMBDA S,f: card(S))

Many useful properties of sum are available, including:
x : VAR T

S,A,B: VAR finite_set

sum_empty: THEOREM sum(emptyset[T],f) = zero

sum_singleton: THEOREM sum(singleton(x),f) = f(x) + zero

sum_add: THEOREM sum(add(x,S),f)

= sum(S,f) + IF member(x,S) THEN zero ELSE f(x) ENDIF

sum_remove: THEOREM sum(remove(x,S),f)

+ IF member(x,S) THEN f(x) ELSE zero ENDIF = sum(S,f)

3
nasalib/finite sets/finite sets sum.pvs

Jeffrey Maddalon (NASA) Collection Types PVS Class, 2012 35 / 50

Induction Schemes

The library4 provides several induction schemes over sets:

cardinal induction inducts over cardinality of the set
finite set induction p(emptyset) and p(S) => p(add(e,S))

finite set ind modified p(emptyset), not S(e), and p(S) =>

p(add(e,S))

finite set induction rest p(emptyset) and rest(S) => p(S)

finite set induction union p(emptyset) and p(S1) AND p(S2) =>

union(S1,S2)

finite set induction gen (FORALL S2: |S2| < |S| => p(S2)) =>

p(S)

nonempty card induction inducts over cardinality of the set
nonempty finite set induct not S(e), and p(S) => p(add(e,S))

Use these by, e.g., (induct :name "finite set induction")

4
nasalib/finite sets/finite sets inductions.pvs

Jeffrey Maddalon (NASA) Collection Types PVS Class, 2012 36 / 50

Bags (aka Multisets)5

Sets capture information about membership

Bags capture information about quantity
bag: TYPE = [T -> nat]

Located in the structures directory of the library

Convert a bag to a set: bag to set

Some operations on bags:
emptybag : bag = (LAMBDA t: 0)

insert(x,b) : bag = (LAMBDA t: IF x = t THEN b(t) + 1 ELSE b(t) ENDIF)

purge(x,b) : bag = (LAMBDA t: IF x = t THEN 0 ELSE b(t) ENDIF)

extract(x,b) : bag = (LAMBDA t: IF x = t THEN b(t) ELSE 0 ENDIF)

plus(a,b) : bag = (LAMBDA t: a(t) + b(t))

union(a,b) : bag = (LAMBDA t: max(a(t),b(t)))

intersection(a,b): bag = (LAMBDA t: min(a(t),b(t)))

5Defined in NASA’s structures library
Jeffrey Maddalon (NASA) Collection Types PVS Class, 2012 37 / 50

Object Collections: Four Ways in PVS

sequence [nat -> T]

bounded array [below(N) -> T]

finite sequence
[# length: nat, seq: [below[length] -> T] #]

list datatype
list [T: TYPE]: DATATYPE

BEGIN

null: null?

cons (car: T, cdr:list):cons?

END list

lists will be covered in the abstract data type lecture

Jeffrey Maddalon (NASA) Collection Types PVS Class, 2012 38 / 50

Sequence

PVS provides a sequence (i.e., unbounded array) as follows:
T: TYPE

A1: FUNCTION [nat -> T]

A2: ARRAY [nat -> T]

A3: [nat -> T]

A4: sequence[T]

all of which are the same.

Jeffrey Maddalon (NASA) Collection Types PVS Class, 2012 39 / 50

Prelude sequences Theory

function meaning

nth(seq, n) nth element of the sequence
suffix(seq, n) sequence starting after the nth element
first(seq) first element
rest(seq) sequence excluding the first element
add(x, seq) add element x to the sequence
delete(n, seq) delete the nth element
insert(x, n, seq) insert x into seq at n

In addition to these definitions are certain results such as:

add first rest: LEMMA add(first(seq), rest(seq)) = seq

Jeffrey Maddalon (NASA) Collection Types PVS Class, 2012 40 / 50

Bounded Array6

Sometimes it is useful to have an array that is indexed by integer subrange
as in a programming language:

below_arrays[N: nat, T: TYPE]: THEORY

BEGIN

below_array: TYPE = [below(N) -> T]

A: VAR below_array

x: VAR T

ii: VAR below(N)

in?(x,A): bool = (EXISTS ii: x = A(ii))

END below_arrays

Note that below is defined in PVS prelude
below(i: nat): TYPE = {s: nat | s < i}

6Defined in NASA’s structures library
Jeffrey Maddalon (NASA) Collection Types PVS Class, 2012 41 / 50

Definition of Array Maximum - for Reference

imax rec
7 returns the index of the maximum value

imax_rec(A,ii,jj): RECURSIVE below(N) =

IF jj <= ii THEN ii

ELSE

LET IX = imax_rec(A,jj-1) IN

IF A(IX) <= A(jj) THEN jj ELSE IX ENDIF

ENDIF MEASURE (LAMBDA A,ii,jj: jj)

This generates the following TCCs:
imax_rec_TCC1: OBLIGATION (FORALL (jj): jj = 0 IMPLIES 0 < N);

imax_rec_TCC2: OBLIGATION (FORALL (jj): NOT jj = 0

IMPLIES jj - 1 >= 0 AND jj - 1 < N);

imax_rec_TCC3: OBLIGATION (FORALL (A, jj): NOT jj = 0

IMPLIES jj - 1 < jj);

all of which are discharged with M-x tcp.

7
nasalib/finite sets/finite sets inductions.pvs

Jeffrey Maddalon (NASA) Collection Types PVS Class, 2012 42 / 50

Properties of imax rec - for Reference

imax rec lem: LEMMA j <= jj IMPLIES A(j) <= A(imax rec(A,jj))

Proof:
(""

(induct "jj" 1)

(("1" (flatten) (skosimp*) (expand "imax_rec") (assert))

("2" (skosimp*) (expand "imax_rec" +) (inst?) (lift-if) (ground))))

imax rec rng: LEMMA 0 <= imax rec(A,jj) AND imax rec(A,jj) <= jj

Proof:
(""

(induct "jj" 1)

(("1" (flatten) (skosimp*) (expand "imax_rec") (propax))

("2" (skosimp*) (expand "imax_rec" +) (inst?) (lift-if) (ground))))

Jeffrey Maddalon (NASA) Collection Types PVS Class, 2012 43 / 50

Definition of max(A) and Properties

imax(A): below(N) = imax_rec(A,N-1)

max(A): real = A(imax(A))

max_lem : LEMMA A(i) <= max(A)

imax_lem: LEMMA A(imax(A)) = max(A)

max_def : LEMMA A(i) <= max(A) AND in?(max(A),A)

Jeffrey Maddalon (NASA) Collection Types PVS Class, 2012 44 / 50

Array Concatenation 8

concat_arrays [n:nat, m:nat, T: TYPE]: THEORY

BEGIN

IMPORTING below_arrays

a_n: VAR below_array[n,T]

a_m: VAR below_array[m,T]

nm : VAR below(n+m)

o(a_n, a_m): below_array[n+m,T]

= (LAMBDA nm: IF nm < n THEN a_n(nm)

ELSE a_m(nm - n)

ENDIF)

The function o overloads a function already defined in the prelude.

The return type of o depends upon the theory parameters n and m.

o is an operator
I Either o(A,B) or A o B are valid

8
nasalib/structures/concat arrays.pvs

Jeffrey Maddalon (NASA) Collection Types PVS Class, 2012 45 / 50

Array Concatenation Properties

a_n: VAR below_array[n,T]

a_m: VAR below_array[m,T]

nm : VAR below(n+m)

concat_array_bot0: THEOREM m = 0 IMPLIES a_n o a_m = a_n

concat_array_top0: THEOREM n = 0 IMPLIES a_n o a_m = a_m

i: VAR below(n)

j: VAR {i: int | i >= n AND i < n+m}

concat_array_bot : THEOREM (a_n o a_m)(i) = a_n(i)

concat_array_top : THEOREM (a_n o a_m)(j) = a_m(j-n)

Jeffrey Maddalon (NASA) Collection Types PVS Class, 2012 46 / 50

Array Extraction

Given an array A = [a 0, a 1, a 2, a 3, . . ., a (N-1)], we want the elements
A^(m,n) = [a_m, ..., a_n]

caret_arrays [N:nat, T: TYPE]: THEORY

BEGIN

IMPORTING below_arrays, empty_array_def

A: VAR below_array[N,T]

m, n: VAR nat

p: VAR [nat, below[N]]

empty_array: below_array[0,T]

^(A, p): below_array[LET (m, n) = p IN

IF m > n THEN 0

ELSE n - m + 1 ENDIF,T] =

LET (m, n) = p IN

IF m <= n THEN (LAMBDA (x: below[n-m+1]): A(x + m))

ELSE empty_array

ENDIF

Jeffrey Maddalon (NASA) Collection Types PVS Class, 2012 47 / 50

Properties of Array Extraction

caret_all : LEMMA N > 0 IMPLIES A^(0,N-1) = A

caret_ii_0: LEMMA FORALL (i: below(N)): (A^(i,i))(0) = A(i)

caret_elim: LEMMA

FORALL (j: below(N), i: upto(j), k: below(j-i+1)):

(A ^ (i, j))(k) = A(i+k)

(A^ (i,i)) extracts an array with a single element

(A^ (i,i))(0) returns the single element

Jeffrey Maddalon (NASA) Collection Types PVS Class, 2012 48 / 50

Prelude Theory Finite Sequences

finite_sequences [T: TYPE]: THEORY

BEGIN

finite_sequence: TYPE = [# length:nat, seq:[below[length] -> T] #]

finseq: TYPE = finite_sequence

fs, fs1, fs2, fs3: VAR finseq

m, n: VAR nat

empty_seq: finseq =

(# length := 0,

seq := (LAMBDA (x: below[0]): epsilon! (t:T): true) #)

finseq_appl(fs): [below[length(fs)] -> T] = fs‘seq;

Jeffrey Maddalon (NASA) Collection Types PVS Class, 2012 49 / 50

Finite Sequences Operations
Similar to bounded arrays, concatenation and extraction are defined
Concatenation operator:

o(fs1, fs2): finseq =

LET lsum = fs1‘length + fs2‘length

IN (# length := lsum,

seq := (LAMBDA (n:below[lsum]):

IF n < fs1‘length

THEN fs1‘seq(n)

ELSE fs2‘seq(n-fs1‘length)

ENDIF) #);

Extraction operator:
p: VAR [nat, nat]

^(fs, p): finseq =

LET (m, n) = p

IN IF m > n OR m >= fs‘length

THEN empty_seq

ELSE LET len = min(n - m + 1, fs‘length - m)

IN (# length := len,

seq := (LAMBDA (x: below[len]): fs‘seq(x + m)) #)

ENDIF

Jeffrey Maddalon (NASA) Collection Types PVS Class, 2012 50 / 50

